Edwards Zeta Function Djvu To Pdf

Posted on
Color representation of the Dirichlet eta function. It is generated as a Matplotlib plot using a version of the Domain coloring method.[1]
  1. Djvu To Pdf Online
  2. Zeta Function Pdf
  3. Djvu To Pdf Mac

In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0:

Edwards, HM, 'The Riemann Zeta Function',?,? My work is available in pdf format on my site http. The Riemann Zeta Function David Jekel June 6, 2013. Before we get to the zeta function itself, I will state, without. 2 De nition of the Zeta Function Here I summarize Edwards. Riemann's zeta function electronic resource by Edwards, Harold M. Publication date 1974. Borrow this book to access EPUB and PDF files. IN COLLECTIONS. Books to Borrow. Books for People with Print Disabilities. Internet Archive Books. Scanned in China. Uploaded by Lotu Tii on November 4, 2014. SIMILAR ITEMS (based on metadata).

η(s)=n=1(1)n1ns=11s12s+13s14s+{displaystyle eta (s)=sum _{n=1}^{infty }{(-1)^{n-1} over n^{s}}={frac {1}{1^{s}}}-{frac {1}{2^{s}}}+{frac {1}{3^{s}}}-{frac {1}{4^{s}}}+cdots }

This Dirichlet series is the alternating sum corresponding to the Dirichlet series expansion of the Riemann zeta function, ζ(s) — and for this reason the Dirichlet eta function is also known as the alternating zeta function, also denoted ζ*(s). The following relation holds:

η(s)=(121s)ζ(s){displaystyle eta (s)=left(1-2^{1-s}right)zeta (s)}

While the Dirichlet series expansion for the eta function is convergent only for any complex numbers with real part > 0, it is Abel summable for any complex number. This serves to define the eta function as an entire function (and the above relation then shows the zeta function is meromorphic with a simple pole at s = 1, and perhaps poles at the other zeros of the factor 121s{displaystyle 1-2^{1-s}}).

Equivalently, we may begin by defining

η(s)=1Γ(s)0xs1ex+1dx{displaystyle eta (s)={frac {1}{Gamma (s)}}int _{0}^{infty }{frac {x^{s-1}}{e^{x}+1}}{dx}}

which is also defined in the region of positive real part (Γ(s){displaystyle Gamma (s)} represents the Gamma function). This gives the eta function as a Mellin transform.

Hardy gave a simple proof of the functional equation for the eta function, which is

η(s)=212s112sπs1ssin(πs2)Γ(s)η(s+1).{displaystyle eta (-s)=2{frac {1-2^{-s-1}}{1-2^{-s}}}pi ^{-s-1}ssin left({pi s over 2}right)Gamma (s)eta (s+1).}

From this, one immediately has the functional equation of the zeta function also, as well as another means to extend the definition of eta to the entire complex plane.

  • 4Numerical algorithms
Edwards Zeta Function Djvu To Pdf

Zeros[edit]

The zeros of the eta function include all the zeros of the zeta function: the negative even integers (real equidistant simple zeros); the zeros along the critical line, none of which are known to be multiple and over 40% of which have been proven to be simple, and the hypothetical zeros in the critical strip but not on the critical line, which if they do exist must occur at the vertices of rectangles symmetrical around the x-axis and the critical line and whose multiplicity is unknown. In addition, the factor 121s{displaystyle 1-2^{1-s}} adds an infinite number of complex simple zeros, located at equidistant points on the line (s)=1{displaystyle Re (s)=1}, at sn=1+2nπi/log(2){displaystyle s_{n}=1+2npi i/log(2)} where n is any nonzero integer.

Under the Riemann hypothesis, the zeros of the eta function would be located symmetrically with respect to the real axis on two parallel lines (s)=1/2,(s)=1{displaystyle Re (s)=1/2,Re (s)=1}, and on the perpendicular half line formed by the negative real axis.

Landau's problem with ζ(s) = η(s)/0 and solutions[edit]

In the equation η(s) = (1−21−s) ζ(s), 'the pole of ζ(s) at s=1 is cancelled by the zero of the other factor' (Titchmarsh, 1986, p. 17), and as a result η(1) is neither infinite nor zero (see § Particular values). However, in the equation

ζ(s)=η(s)121s,{displaystyle zeta (s)={frac {eta (s)}{1-2^{1-s}}},}

η must be zero at all the points sn=1+n2πln2i,n0,nZ{displaystyle s_{n}=1+n{frac {2pi }{ln {2}}}i,nneq 0,nin mathbb {Z} }, where the denominator is zero, if the Riemann zeta function is analytic and finite there. The problem of proving this without defining the zeta function first was signaled and left open by E. Landau in his 1909 treatise on number theory: 'Whether the eta series is different from zero or not at the points sn1{displaystyle s_{n}neq 1}, i.e., whether these are poles of zeta or not, is not readily apparent here.'

A first solution for Landau's problem was published almost 40 years later by D. V. Widder in his book The Laplace Transform. It uses the next prime 3 instead of 2 to define a Dirichlet series similar to the eta function, which we will call the λ{displaystyle lambda } function, defined for (s)>0{displaystyle Re (s)>0} and with some zeros also on (s)=1{displaystyle Re (s)=1}, but not equal to those of eta.

λ(s)=(133s)ζ(s)=(1+12s)23s+(14s+15s)26s+{displaystyle {begin{aligned}lambda (s)=(1-{frac {3}{3^{s}}})zeta (s)=(1+{frac {1}{2^{s}}})-{frac {2}{3^{s}}}+({frac {1}{4^{s}}}+{frac {1}{5^{s}}})-{frac {2}{6^{s}}}+ldots end{aligned}}}

If s{displaystyle s} is real and strictly positive, the series converges since the regrouped terms alternate in sign and decrease in absolute value to zero. According to a theorem on uniform convergence of Dirichlet series first proven by Cahen in 1894, the λ(s){displaystyle lambda (s)} function is then analytic for (s)>0{displaystyle Re (s)>0}, a region which includes the line (s)=1{displaystyle Re (s)=1}. Now we can define correctly, where the denominators are not zero,

ζ(s)=η(s)122s{displaystyle zeta (s)={frac {eta (s)}{1-{frac {2}{2^{s}}}}}}

or

ζ(s)=λ(s)133s{displaystyle zeta (s)={frac {lambda (s)}{1-{frac {3}{3^{s}}}}}}

Since log3log2{displaystyle {frac {log 3}{log 2}}} is irrational, the denominators in the two definitions are not zero at the same time except for s=1{displaystyle s=1}, and the ζ(s){displaystyle zeta (s),} function is thus well defined and analytic for (s)>0{displaystyle Re (s)>0} except at s=1{displaystyle s=1}. We finally get indirectly that η(sn)=0{displaystyle eta (s_{n})=0} when sn1{displaystyle s_{n}neq 1}:

η(sn)=(122sn)ζ(sn)=122sn133snλ(sn)=0.{displaystyle eta (s_{n})=(1-{frac {2}{2^{s_{n}}}})zeta (s_{n})={frac {1-{frac {2}{2^{s_{n}}}}}{1-{frac {3}{3^{s_{n}}}}}}lambda (s_{n})=0.}

An elementary direct and ζ{displaystyle zeta ,}-independent proof of the vanishing of the eta function at sn1{displaystyle s_{n}neq 1} was published by J. Sondow in 2003. It expresses the value of the eta function as the limit of special Riemann sums associated to an integral known to be zero, using a relation between the partial sums of the Dirichlet series defining the eta and zeta functions for (s)>1{displaystyle Re (s)>1}.

With some simple algebra performed on finite sums, we can write for any complex s

η2n(s)=k=12n(1)k1ks=112s+13s14s++(1)2n1(2n)s=1+12s+13s+14s++1(2n)s2(12s+14s++1(2n)s){displaystyle eta _{2n}(s)=sum _{k=1}^{2n}{frac {(-1)^{k-1}}{k^{s}}}=1-{frac {1}{2^{s}}}+{frac {1}{3^{s}}}-{frac {1}{4^{s}}}+ldots +{frac {(-1)^{2n-1}}{{(2n)}^{s}}}=1+{frac {1}{2^{s}}}+{frac {1}{3^{s}}}+{frac {1}{4^{s}}}+ldots +{frac {1}{{(2n)}^{s}}}-2({frac {1}{2^{s}}}+{frac {1}{4^{s}}}+ldots +{frac {1}{{(2n)}^{s}}})}
Function
=(122s)ζ2n(s)+22s(1(n+1)s++1(2n)s)=(122s)ζ2n(s)+2n(2n)s1n(1(1+1/n)s++1(1+n/n)s).{displaystyle =(1-{frac {2}{2^{s}}})zeta _{2n}(s)+{frac {2}{2^{s}}}({frac {1}{{(n+1)}^{s}}}+ldots +{frac {1}{{(2n)}^{s}}})=(1-{frac {2}{2^{s}}})zeta _{2n}(s)+{frac {2n}{{(2n)}^{s}}},{frac {1}{n}},({frac {1}{{(1+1/n)}^{s}}}+ldots +{frac {1}{{(1+n/n)}^{s}}}).}

Now if s=1+it{displaystyle s=1+it} and 2s=2{displaystyle 2^{s}=2}, the factor multiplying ζ2n(s){displaystyle zeta _{2n}(s),} is zero, and

η2n(s)=1nitRn(1(1+x)s,0,1),{displaystyle eta _{2n}(s)={frac {1}{n^{it}}}R_{n}({frac {1}{{(1+x)}^{s}}},0,1),}

where Rn(f(x),a,b) denotes a special Riemann sum approximating the integral of f(x) over [a,b].For t = 0 i.e. s = 1, we get

η(1)=limnη2n(1)=limnRn(11+x,0,1)=01dx1+x=log20.{displaystyle eta (1)=lim _{nto infty }eta _{2n}(1)=lim _{nto infty }R_{n}({frac {1}{1+x}},0,1)=int _{0}^{1}{frac {dx}{1+x}}=log 2neq 0.}

Otherwise, if t0{displaystyle tneq 0}, then n1s=nit=1{displaystyle n^{1-s} = n^{-it} =1}, which yields

η(s)=limnη2n(s)=limnRn(1(1+x)s,0,1)=01dx(1+x)s=21s11s=11it=0.{displaystyle eta (s) =lim _{nto infty } eta _{2n}(s) =lim _{nto infty } R_{n}({frac {1}{{(1+x)}^{s}}},0,1) = int _{0}^{1}{frac {dx}{{(1+x)}^{s}}} = {frac {2^{1-s}-1}{1-s}} = {frac {1-1}{-it}} =0.}

Assuming η(sn)=0{displaystyle eta (s_{n})=0}, for each point sn1{displaystyle s_{n}neq 1} where 2sn=2{displaystyle 2^{s_{n}}=2}, we can now define ζ(sn){displaystyle zeta (s_{n}),} by continuity as follows,

ζ(sn)=limssnη(s)122s=limssnη(s)η(sn)22sn22s=limssnη(s)η(sn)ssnssn22sn22s=η(sn)log(2).{displaystyle zeta (s_{n})=lim _{sto s_{n}}{frac {eta (s)}{1-{frac {2}{2^{s}}}}}=lim _{sto s_{n}}{frac {eta (s)-eta (s_{n})}{{frac {2}{2^{s_{n}}}}-{frac {2}{2^{s}}}}}=lim _{sto s_{n}}{frac {eta (s)-eta (s_{n})}{s-s_{n}}},{frac {s-s_{n}}{{frac {2}{2^{s_{n}}}}-{frac {2}{2^{s}}}}}={frac {eta '(s_{n})}{log(2)}}.}

The apparent singularity of zeta at sn1{displaystyle s_{n}neq 1} is now removed, and the zeta function is proven to be analytic everywhere in s>0{displaystyle Re {s}>0}, except at s=1{displaystyle s=1} where

lims1(s1)ζ(s)=lims1η(s)121ss1=η(1)log2=1.{displaystyle lim _{sto 1}(s-1)zeta (s)=lim _{sto 1}{frac {eta (s)}{frac {1-2^{1-s}}{s-1}}}={frac {eta (1)}{log 2}}=1.}

Integral representations[edit]

A number of integral formulas involving the eta function can be listed. The first one follows from a change of variable of the integral representation of the Gamma function (Abel, 1823), giving a Mellin transform which can be expressed in different ways as a double integral (Sondow, 2005). This is valid for s>0.{displaystyle Re s>0.}

Γ(s)η(s)=0xs1ex+1dx=00xxs2ex+1dydx=00(t+r)s2et+r+1drdt=0101(log(xy))s21+xydxdy.{displaystyle {begin{aligned}Gamma (s)eta (s)&=int _{0}^{infty }{frac {x^{s-1}}{e^{x}+1}},dx=int _{0}^{infty }int _{0}^{x}{frac {x^{s-2}}{e^{x}+1}},dy,dx[8pt]&=int _{0}^{infty }int _{0}^{infty }{frac {(t+r)^{s-2}}{e^{t+r}+1}}{dr},dt=int _{0}^{1}int _{0}^{1}{frac {(-log(xy))^{s-2}}{1+xy}},dx,dy.end{aligned}}}

The Cauchy–Schlömilch transformation (Amdeberhan, Moll et al., 2010) can be used to prove this other representation, valid for s>1{displaystyle Re s>-1}. Integration by parts of the first integral above in this section yields another derivation.

21sΓ(s+1)η(s)=20x2s+1cosh2(x2)dx=0tscosh2(t)dt.{displaystyle 2^{1-s},Gamma (s+1),eta (s)=2int _{0}^{infty }{frac {x^{2s+1}}{cosh ^{2}(x^{2})}},dx=int _{0}^{infty }{frac {t^{s}}{cosh ^{2}(t)}},dt.}

The next formula, due to Lindelöf (1905), is valid over the whole complex plane, when the principal value is taken for the logarithm implicit in the exponential.

η(s)=(1/2+it)seπt+eπtdt.{displaystyle eta (s)=int _{-infty }^{infty }{frac {(1/2+it)^{-s}}{e^{pi t}+e^{-pi t}}},dt.}

This corresponds to a Jensen (1895) formula for the entire function (s1)ζ(s){displaystyle (s-1),zeta (s)}, valid over the whole complex plane and also proven by Lindelöf.

(s1)ζ(s)=2π(1/2+it)1s(eπt+eπt)2dt.{displaystyle (s-1)zeta (s)=2pi ,int _{-infty }^{infty }{frac {(1/2+it)^{1-s}}{(e^{pi t}+e^{-pi t})^{2}}},dt.}
Pdf

'This formula, remarquable by its simplicity, can be proven easily with the help of Cauchy's theorem, so important for the summation of series' wrote Jensen (1895). Similarly by converting the integration paths to contour integrals one can obtain other formulas for the eta function, such as this generalisation (Milgram, 2013) valid for 0<c<1{displaystyle 0<c<1} and all s{displaystyle s} :

Djvu To Pdf Online

η(s)=12(c+it)ssin(π(c+it))dt.{displaystyle eta (s)={frac {1}{2}}int _{-infty }^{infty }{frac {(c+it)^{-s}}{sin {(pi (c+it))}}},dt.}

The zeros on the negative real axis are factored out cleanly by making c0+{displaystyle cto 0^{+}} (Milgram, 2013) to obtain a formula valid for s<0{displaystyle Re s<0} :

η(s)=sin(sπ2)0tssinh(πt)dt.{displaystyle eta (s)=-sin left({frac {spi }{2}}right)int _{0}^{infty }{frac {t^{-s}}{sinh {(pi t)}}},dt.}

Numerical algorithms[edit]

Most of the series acceleration techniques developed for alternating series can be profitably applied to the evaluation of the eta function. One particularly simple, yet reasonable method is to apply Euler's transformation of alternating series, to obtain

Zeta Function Pdf

η(s)=n=012n+1k=0n(1)k(nk)1(k+1)s.{displaystyle eta (s)=sum _{n=0}^{infty }{frac {1}{2^{n+1}}}sum _{k=0}^{n}(-1)^{k}{n choose k}{frac {1}{(k+1)^{s}}}.}

Note that the second, inside summation is a forward difference.

Djvu To Pdf Mac

Borwein's method[edit]

Peter Borwein used approximations involving Chebyshev polynomials to produce a method for efficient evaluation of the eta function.[2] If

dk=n=0k(n+1)!4(n)!(2)!{displaystyle d_{k}=nsum _{ell =0}^{k}{frac {(n+ell -1)!4^{ell }}{(n-ell )!(2ell )!}}}

then

η(s)=1dnk=0n1(1)k(dkdn)(k+1)s+γn(s),{displaystyle eta (s)=-{frac {1}{d_{n}}}sum _{k=0}^{n-1}{frac {(-1)^{k}(d_{k}-d_{n})}{(k+1)^{s}}}+gamma _{n}(s),}

where for (s)12{displaystyle Re (s)geq {frac {1}{2}}} the error term γn is bounded by

γn(s)3(3+8)n(1+2(s))exp(π2(s)).{displaystyle gamma _{n}(s) leq {frac {3}{(3+{sqrt {8}})^{n}}}(1+2 Im (s) )exp({frac {pi }{2}} Im (s) ).}

The factor of 3+85.8{displaystyle 3+{sqrt {8}}approx 5.8} in the error bound indicates that the Borwein series converges quite rapidly as n increases.

Particular values[edit]

  • η(0) = 12, the Abel sum of Grandi's series 1 − 1 + 1 − 1 + · · ·.
  • η(−1) = 14, the Abel sum of 1 − 2 + 3 − 4 + · · ·.
  • For k an integer > 1, if Bk is the k-th Bernoulli number then
    η(1k)=2k1kBk.{displaystyle eta (1-k)={frac {2^{k}-1}{k}}B_{k}.}

Also:

η(1)=ln2{displaystyle ! eta (1)=ln 2}, this is the alternating harmonic series
η(2)=π212{displaystyle eta (2)={pi ^{2} over 12}}OEIS: A072691
η(4)=7π47200.94703283{displaystyle eta (4)={{7pi ^{4}} over 720}approx 0.94703283}
η(6)=31π6302400.98555109{displaystyle eta (6)={{31pi ^{6}} over 30240}approx 0.98555109}
η(8)=127π812096000.99623300{displaystyle eta (8)={{127pi ^{8}} over 1209600}approx 0.99623300}
η(10)=73π1068428800.99903951{displaystyle eta (10)={{73pi ^{10}} over 6842880}approx 0.99903951}
η(12)=1414477π1213076743680000.99975769{displaystyle eta (12)={{1414477pi ^{12}} over {1307674368000}}approx 0.99975769}

The general form for even positive integers is:

η(2n)=(1)n+1B2nπ2n(22n11)(2n)!.{displaystyle eta (2n)=(-1)^{n+1}{{B_{2n}pi ^{2n}(2^{2n-1}-1)} over {(2n)!}}.}

Derivatives[edit]

The derivative with respect to the parameter s is for s1{displaystyle sneq 1}

η(s)=n=1(1)nlnnns=21sln(2)ζ(s)+(121s)ζ(s){displaystyle eta '(s)=sum _{n=1}^{infty }{frac {(-1)^{n}ln n}{n^{s}}}=2^{1-s}ln(2),zeta (s)+(1-2^{1-s}),zeta '(s)}.
η(1)=ln(2)γln(2)221{displaystyle eta '(1)=ln(2),gamma -ln(2)^{2},2^{-1}}

References[edit]

  1. ^http://nbviewer.ipython.org/github/empet/Math/blob/master/DomainColoring.ipynb
  2. ^Borwein, Peter (2000). 'An efficient algorithm for the Riemann zeta function'. In Théra, Michel A. (ed.). Constructive, Experimental, and Nonlinear Analysis(PDF). Conference Proceedings, Canadian Mathematical Society. 27. Providence, RI: American Mathematical Society, on behalf of the Canadian Mathematical Society. pp. 29–34. ISBN978-0-8218-2167-1.
  • Jensen, J. L. W. V. (1895). L'Intermédiaire des Mathématiciens. II: 346.Missing or empty title= (help)
  • Lindelöf, Ernst (1905). Le calcul des résidus et ses applications à la théorie des fonctions. Gauthier-Villars. p. 103.
  • Widder, David Vernon (1946). The Laplace Transform. Princeton University Press. p. 230.
  • Landau, Edmund, Handbuch der Lehre von der Verteilung der Primzahlen, Erster Band, Berlin, 1909, p. 160. (Second edition by Chelsea, New York, 1953, p. 160, 933)
  • Titchmarsh, E. C. (1986). The Theory of the Riemann Zeta Function, Second revised (Heath-Brown) edition. Oxford University Press.
  • Conrey, J. B. (1989). 'More than two fifths of the zeros of the Riemann zeta function are on the critical line'. Journal für die Reine und Angewandte Mathematik. 399: 1–26. doi:10.1515/crll.1989.399.1.
  • Knopp, Konrad (1990) [1922]. Theory and Application of Infinite Series. Dover. ISBN0-486-66165-2.
  • Borwein, P., An Efficient Algorithm for the Riemann Zeta Function, Constructive experimental and nonlinear analysis, CMS Conference Proc. 27 (2000), 29–34.
  • Sondow, Jonathan (2002). 'Double integrals for Euler's constant and ln 4/π and an analog of Hadjicostas's formula'. arXiv:math.CO/0211148. Amer. Math. Monthly 112 (2005) 61–65, formula 18.
  • Sondow, Jonathan. 'Zeros of the Alternating Zeta Function on the Line R(s)=1'. arXiv:math/0209393. Amer. Math. Monthly, 110 (2003) 435–437.
  • Gourdon, Xavier; Sebah, Pascal (2003). 'Numerical evaluation of the Riemann Zeta-function'(PDF).
  • Amdeberhan, T.; Glasser, M. L.; Jones, M. C; Moll, V. H.; Posey, R.; Varela, D. (2010). 'The Cauchy–Schlomilch Transformation'. arXiv:1004.2445. p. 12.
  • Milgram, Michael S. (2012). 'Integral and Series Representations of Riemann's Zeta Function, Dirichlet's Eta Function and a Medley of Related Results'. Journal of Mathematics. 2013: 1–17. arXiv:1208.3429. doi:10.1155/2013/181724..
Retrieved from 'https://en.wikipedia.org/w/index.php?title=Dirichlet_eta_function&oldid=878998993'